
www.umbc.eduAll materials copyright UMBC unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 06 – Strings
(and Decisions Continued)

www.umbc.edu

Last Class We Covered

• Control structures

• Conditional operators

– Comparison operators

– Logical operators

• Boolean data types

• One-way and two-way decision structures

– if and if-else statements

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• Review control structures & conditional operators

• Understand more decision structures

– Multi-way, using if-elif-else statements

• Practice implementing algorithms

• To better understand the string data type

– Learn how they are represented

– Learn about and use some of their built-in
functions

4

www.umbc.edu

Example – Dangerous Dinosaurs

• You have just been flown to an island where
there are a wide variety of dinosaurs

• You are unsure which are dangerous
so we have come up with some
rules to figure out which
are dangerous and
which are not

5 Image from wikimedia.org

www.umbc.edu

Time for…

6

www.umbc.edu7

Multi-Way Selection Structures

www.umbc.edu

Bigger (and Better) Decision Structures

• One-way and two-way structures are useful

• But what if we have to check multiple
exclusive conditions?

– Exclusive conditions do not overlap with each other

– e.g., value of a playing card, letter grade in a class

• What could we use?

www.umbc.edu

Multi-Way Code Framework
if <condition1>:

<case1 statements>

elif <condition2>:

<case2 statements>

elif <condition3>:

<case3 statements>

more "elif" statements if needed

else:

<default statements>

9

“else” statement
is optional

www.umbc.edu

Multi-Way Selection Example

• A a computer science professor gives a five-
point quiz at the beginning of every class

• Possible grades are as follows:

5 points: A 3 points: C 1 point: F
4 points: B 2 points: D 0 points: F

• To print out the letter grade based on the raw
points, what would the code need to look like?

10

www.umbc.edu

Multi-Way Selection Solution
def main():

score = int(input("Your quiz score out of 5: "))

if score == 5:

print("You earned an A")

elif score == 4:

print("You earned a B")

elif score == 3:

print("You earned a C")

elif score == 2:

print("You earned a D")

else:

print("You failed the quiz")

main()

11

www.umbc.edu

Multi-Way Selection Solution
def main():

score = int(input("Your quiz score out of 5: "))

if score == 5:

print("You earned an A")

elif score == 4:

print("You earned a B")

elif score == 3:

print("You earned a C")

elif score == 2:

print("You earned a D")

else:

print("You failed the quiz")

main()

12

these are five
separate statements

since this is an
if-elif-else

block, only one of the
five statements
will be executed

www.umbc.edu13

Nested Selection Structures

www.umbc.edu

Nested Selection Structures

• Up until now, we have only used a
single level of decision making

• What if we want to make decisions
within decisions?

• These are called nested selection structures

–We’ll first cover nested if-else statements

14

www.umbc.edu

Nested Selection Structure Examples

• For example, we may

– Ask the user if they have a pet

– if they have a pet

• Ask the user what type of pet

• if they have a dog, take it for a walk

• elif they have a cat, clean the litter box

• else clean the cage/stable/tank

15

www.umbc.edu

Nested Selection Structures Code

if condition1 == True:

if condition2 == True:

execute codeA

elif condition3 == True:

execute codeB

else:

execute codeC

else:

execute codeD

16

www.umbc.edu

Nested Selection Structures Code

if condition1 == True:

if condition2 == True:

execute codeA

elif condition3 == True:

execute codeB

else:

execute codeC

else:

execute codeD

17

this is the main level
of our program:

an if-else block

this is the next level,
inside the first
if statement

codeA, codeB, and codeC
are separate statements

since this is an
if-elif-else

block, only one of them
will be executed

if our first if
statement was
false, we would

skip here and
execute codeD

www.umbc.edu

Nested Selection Structure Example

• You recently took a part-time job to help pay for
your student loans at a local cell phone store

• If you sell at least $1000 worth of phones in a
pay period, you get a bonus

– Your bonus is 3% if you sold at least 3
iPhones, otherwise your bonus is only 2%

18

www.umbc.edu

Nested Selection Solution
def main():

totalSales = float(input("Please enter your total sales:"))

if totalSales >= 1000.00:

iPhonesSold = int(input("Enter the number of iPhones sold:"))

if iPhonesSold >= 3:

bonus = totalSales * 0.03

else:

bonus = totalSales * 0.02

print("Your bonus is $", bonus)

else:

print("Sorry, you do not get a bonus this pay period.")

main()

19

www.umbc.edu20

Strings

www.umbc.edu

The String Data Type

• Text is represented in programs by
the string data type

• A string is a sequence of characters enclosed
within quotation marks (") or apostrophes (')

– Sometimes called double quotes or single quotes

• FUN FACT! – The most common use of
personal computers is word processing

21

www.umbc.edu

String Examples
>>> str1 = "Hello"

>>> str2 = 'spam'

>>> print(str1, str2)

Hello spam

>>> type(str1)

<class 'str'>

>>> type(str2)

<class 'str'>

22

www.umbc.edu

Getting Strings as Input

• Using input() automatically gets a string

>>> firstName = input("Please enter your name: ")

Please enter your name: Shakira

>>> print("Hello", firstName)

Hello Shakira

>>> type(firstName)

<class 'str'>

>>> print(firstName, firstName)

Shakira Shakira

23

www.umbc.edu

Numbering in Strings

• Strings don’t count their characters from 1

– They start counting from 0!

• Strings with n characters go from 0 to n-1

– The string below has 5 characters, and is
numbered from 0 to 4

24

0 1 2 3 4

H e l l o

www.umbc.edu

Accessing Individual Characters

• We can access the individual characters
in a string through indexing

– Characters are the letters, numbers, spaces, and
symbols that make up a string

• The characters in a string are numbered
starting from the left, beginning with 0

25

www.umbc.edu

Syntax of Accessing Characters

• The general form is

strName[expression]

• Where strName is the name of the string
variable and expression determines
which character is selected from the string

26

www.umbc.edu

Example String

>>> greet = "Hello Bob"

>>> greet[0]

'H'

>>> print(greet[0], greet[2], greet[4])

H l o

>>> x = 8

>>> print(greet[x - 2])

B

27

0 1 2 3 4 5 6 7 8

H e l l o B o b

www.umbc.edu

Example String

28

0 1 2 3 4 5 6 7 8

H e l l o B o b

• In a string of n characters, the last
character is at position n-1 since we
start counting with 0

• So if a string is 10 characters long, the
last character is at what index?
– Index 9

www.umbc.edu

Example String

29

0 1 2 3 4 5 6 7 8

H e l l o B o b

• Index from the right side using negative indexes
>>> greet[-1]

'b'

>>> greet[-3]

'B'

• Why don’t we start from zero?

greet[0]

already means the
first character, 'H'

www.umbc.edu30

Substrings and Slicing

www.umbc.edu

Substrings

• Indexing only returns a single character
from the entire string

• We can access a substring using
a process called slicing

– Substring: a (sub)part of another string

– Slicing: we are slicing off a portion of the string

31

www.umbc.edu

Slicing Syntax

• The general form is

strName[start:end]

• start and end must both be integers

– The substring begins at index start

– The substring ends before index end

• The letter at index end is not included

32

www.umbc.edu

Slicing Examples

33

0 1 2 3 4 5 6 7 8

H e l l o B o b

>>> greet[0:2]

'He'

>>> greet[5:9]

' Bob'

>>> greet[:5]

'Hello'

>>> greet[1:]

'ello Bob'

>>> greet[:]

'Hello Bob'

www.umbc.edu

Specifics of Slicing

• If start or end are missing, then the
start or the end of the string are used instead

• The index of end must come after
the index of start

– What would the substring greet[1:1] be?

''

– An empty string!

34

www.umbc.edu

More Slicing Examples

35

0 1 2 3 4 5 6 7 8

H e l l o B o b

>>> greet[2:-3]

'llo '

>>> greet[-6:-2]

'lo B'

>>> greet[-6:6]

'lo '

>>> greet[-9:8]

'Hello Bo'

-9 -8 -7 -6 -5 -4 -3 -2 -1

www.umbc.edu

Forming New Strings - Concatenation

• We can put two or more strings together to
form a longer string

• Concatenation “glues” two strings together
>>> "Peanut Butter" + "Jelly"

'Peanut ButterJelly'

>>> "Peanut Butter" + " & " + "Jelly"

'Peanut Butter & Jelly'

36

www.umbc.edu

Rules of Concatenation

• Concatenation does not automatically include
spaces between the strings
>>> "Smash" + "together"

'Smashtogether'

• Concatenation can only be done with strings!

– So how would we concatenate an integer?

>>> "CMSC " + str(201)

'CMSC 201'

37

www.umbc.edu

Forming New Strings - Repetition

• Concatenating the same string together
multiple times can be done with repetition

– Which operator would you use for this?

>>> animal = "dogs"

>>> animal*3

'dogsdogsdogs'

>>> animal*8

'dogsdogsdogsdogsdogsdogsdogsdogs'

38

www.umbc.edu

Practice: Spam and Eggs
>>> "spam" + "eggs"

'spameggs'

>>> "Spam" + "And" + "Eggs"

'SpamAndEggs'

>>> 3 * "spam"

'spamspamspam'

>>> "spam" * 5

'spamspamspamspamspam'

>>> (3 * "spam") + ("eggs" * 5)

'spamspamspameggseggseggseggseggs'

39

www.umbc.edu

Length of a String

• To get the length of a string, use len()

>>> title = "CMSC 201"

>>> len(title)

8

>>> len("Help I'm trapped in here!")

25

• Why would we need the length of a string?

40

www.umbc.edu

String Operators in Python

Operator Meaning

+

*

STRING[#]

STRING[#:#]

len(STRING)

41

for VAR in STRING Iteration

Concatenation

Repetition

Indexing

Slicing

Length

We’ll cover this in a future class, when we learn for loops!

www.umbc.edu

Just a Bit More on Strings

• Python has many, many ways to interact with
strings, and we will cover them in detail soon

• For now, here are two very useful functions:

s.lower() – copy of s in all lowercase letters

s.upper() – copy of s in all uppercase letters

• Why would we need to use these?

–Remember, Python is case-sensitive!

42

www.umbc.edu43

String Processing Examples

www.umbc.edu

Example: Creating Usernames

• Our rules for creating a username:

– First initial, first 7 letters of last name (lowercase)

get user's first and last names

first = input("Please enter your first name: ")

last = input("Please enter your last name: ")

concatenate first initial with 7 letters of last name

userName = first[0].lower() + last[:7].lower()

print("Your username is: ", userName)

44

Why is this 7?

www.umbc.edu

Example: Creating Usernames
>>> first = input("Please enter your first name: ")

Please enter your first name: Donna

>>> last = input("Please enter your last name: ")

Please enter your last name: Rostenkowski

>>> userName = first[0] + last[:7]

>>> print("Your username is: ", userName)

Your username is DRostenk

>>> userName = first[0].lower() + last[:7].lower()

>>> print("Your username is: ", userName)

Your username is drostenk

45

Usernames must be lowercase!

www.umbc.edu

Example: Creating Usernames
>>> first = input("Please enter your first name: ")

Please enter your first name: Barack

>>> last = input("Please enter your last name: ")

Please enter your last name: Obama

>>> uname = first[0].lower() + last[:7].lower()

>>> print("Your username is: ", uname)

Your username is bobama

• What would happen if we did last[7]?

– IndexError – but why does last[:7] work?

46

www.umbc.edu

Announcements

• Your Lab 3 is meeting this week!

• Homework 2 is out

– Due by Wednesday (Sept 21st) at 8:59:59 PM

– You must take the Academic Integrity Quiz!

• Homework 3 will come out Wednesday night

– You must have taken the Academic Integrity Quiz!

47

www.umbc.edu

Practice Problems

• Create a directory inside your “201” folder,
called “practice”; go into the new folder

• Copy this file into your new folder
/afs/umbc.edu/users/k/k/k38/pub/cs201/stringPractice.py

• Complete the files according to its instructions

• Remember, the command to copy is “cp”:
cp /afs/umbc.edu/users/k/k/k38/pub/cs201/stringPractice.py .

48

